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Abstract
The results of studies of physical properties of Ni fcc lattice obtained with the
help of the reduced all-neighbour approximation of the self-consistent phonon
theory are presented. The interatomic interactions are described by the modified
form of the generalized Morse potential, proposed lately by Akgün and Uğur,
with parameters derived from the experimental data for the lattice constant,
cohesive energy, bulk modulus and elastic constants. As a test of the validity
of both the model of interatomic interactions and the model of lattice dynamics
the temperature variations of selected physical properties of Ni are given and
compared with experimental and other theoretical data.

1. Introduction

Pairwise additive central potential functions are widely applied to various problems related
to the description of the solid state [1]. Usually, the pair potential functions contain two or
more adjustable parameters [2, 3]. In determining the parameters of potential energy function
ϕ(r) use is commonly made of the following experimental data [4, 5]: the second virial
coefficient, the Joule–Thomson coefficient, the coefficient of viscosity and the zero-point
properties of the crystal [6, 7]—the lattice constant, sublimation energy, compressibility and
Debye characteristic temperature. The accuracy of the parameters depends on the number of
shells of neighbours having influence on the pair interaction [8, 9]. Interatomic interactions in
metallic crystals have been represented by various model pair potentials. The traditional (12, 6)
Lennard-Jones potential, introduced originally for molecular crystals but usually used on any
occasion, appeared too ineffective [10], as there is no simple expression like the r−6 law for the
rare gas solids to represent the subtle interplay of attractions and repulsions between the mobile
electrons and ions in metals. One way to improve the theoretical predictions was to generalize
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the (12, 6) Lennard-Jones potential to its (n, m) form. The parameters of the generalized
(n, m) Lennard-Jones pair potential were calculated by Zhen and Davies [7] for metallic fcc,
bcc and hcp crystals on the basis of the zero-point experimental data but with use of the purely
static method. Calculations of the dynamic and thermodynamic properties of metallic lattices
with use of the above mentioned parameters were undertaken [11] with the help of the reduced
second-order approximation of the self-consistent phonon theory (RSOSCPT), which is one
of the best dynamical theories of the crystal state, developed by Plakida and Siklós [12] on the
basis of the double-time Green’s function method [13]. As in the RSOSCPT some power series
of the interatomic pair potential appear so it is more convenient to use purely exponential, not
power, potential, particularly since the exponential law is a better representation of repulsion
than the power one [14]. The purely exponential law of interatomic interaction is known as
the (α, α/2) Morse pair potential. Its parameters were calculated from ground-state properties
with use of purely static [6] and semistatic [15] methods, and the latter were used in the
self-consistent calculations.

As the mentioned Lennard-Jones and Morse potential parameters come from purely static
or semistatic methods, they were calculated neglecting the zero-point vibration effects. In
our earlier paper [16] we introduced the self-consistent dynamical method of fitting potential
parameters to the experimental data and we applied it for noble metals in association with three
model pair potentials, namely the generalized four-parameter (n, m) Lennard-Jones, (α, β)

Morse and (α, m) Buckingham, which is exponential and power in repulsion and attraction
parts, respectively.

In the last years Akgün and Uğur proposed [17] for fcc metallic crystals a more generalized
five-parameter version of the Morse pair potential. In the present paper we study the physical
properties of the Ni fcc lattice using the reduced all neighbours approximation of the RSOSCPT
introduced recently by us [9, 18] for description of the heavier rare gas solids [18] and quantum
crystals [9], together with the five-parameter generalized Morse potential with parameters
obtained by Akgün and Uğur [17] from the experimental data for the lattice constant, cohesive
energy, bulk modulus and elastic constants. As a test of effectivity of the new potential we
have also made analogical calculations for the classical (α, β) Morse potential.

2. Interatomic interactions in solid Ni

Interatomic interactions in the Ni fcc lattice are represented in this paper by two versions of
the (α, β) Morse pair potential: classical (M), which is the four-parameter one
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and modified (AU), which is the five-parameter one
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The last equation is equivalent to the original of Akgün and Uğur [17] and was obtained by
the following substitutions: r0 = rAU

0 , D0 = DAU, γ = nAU, β = αAUrAU
0 , α = mAUαAUrAU

0 .
As we see, the modified AU potential (2) is obtained from the classical M one (1) by simply

multiplying by a factor (r0/r)γ , which, in the opinion of Akgün and Uğur, should exhibit the
correct nature of the interatomic forces, particularly at short distance. The real meaning of this
modifying factor is to be verified in the present study.



Physical properties of Ni 753

In equations (1) and (2) α and β are the dimensionless parameters describing the slope
of the potential curve; r0 and D0 define the potential minimum and are, respectively, the
equilibrium distance of two isolated atoms and the energy of their dissociation. The four
above parameters are obtained self-consistently (dynamically) [9] by fitting to the zero-point
experimental data for the nearest neighbour mean separation l0, the cohesive energy E0 and
the isothermal bulk modulus B0 [19]. The parameter γ is taken from Akgün and Uğur [17]
and was obtained from elastic data.

3. The basis of the self-consistent calculations

The self-consistent method of incorporating atomic vibrations consists in replacing the pairwise
static potential (for instance equations (1) or (2)) with its dynamical self-consistent version
according to the following renormalization scheme [12]:

ϕ̃(r) =
∞∑

k=0

1

k!
ykr2k

0 ϕ(2k)(r), (3)

where y is the renormalization parameter or broadening parameter, which depends on the
temperature range and the form of the self-consistent potential and its derivatives. In particular,
for the anharmonic crystals in the low (kBT � ω0L ) and high (kBT � ω0L ) temperature limits
we get the following equations for y [12]:
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)
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1/24
)
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The exact expressions for the symbols appearing in (4) and (5) are given in appendix. kB

and ω0L are the Boltzmann constant and the maximal value of the vibrational frequency in the
harmonic approximation, respectively.

According to (3), the two pair potentials considered in the present paper take the forms
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where Rkj and Akj are the matrixes defined as follows:
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The equilibrium state of the crystal lattice at fixed temperature T and pressure p is determined
by the self-consistent system of equations formed by the renormalization equation (3) and
the equation of state, which in the reduced all-neighbour approximation of the self-consistent
phonon theory (RANSCPT) takes the following form [9]:

p = − zl
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where l ≡ l1, z ≡ z1 and v are, respectively, the equilibrium separation of nearest neighbours,
the number of nearest neighbours and the specific volume, whereas li and zi are, respectively,
the radius and the filling of the i th shell of neighbours. In the RSOSCPT, in which the
simplifying assumption is taken that each atom interacts only with its nearest neighbours, the
expression in brackets reduces to unity. It is worthwhile to point out here that, as shown
by Plakida and Siklós [12], all the physical quantities connected with the crystal lattice can
be expressed as functions of y, ϕ̃, ϕ̃′′, ϕ̃′′′ and l; however, in the RANSCPT the respective
equations must take into account the fact that the potential energy of the crystal consists of
energies of interactions of all pairs of atoms. For example, the internal energy per atom E(zi )

and enthalpy H (zi) are given by [20]

E(zi ) ≈ E +
imax∑
i=2

1
2 zi ϕ̃(li ), (9)

H (zi) ≈ E(zi ) + p(zi )v, (10)

where E is the internal energy in the nearest neighbour approximation [21]. According to the
thermodynamic relationships the molar heats at constant volume CV (zi) and constant pressure
Cp(zi ) are given by [22]
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where S′
0 = S(V , 0), S′′

0 = S(p, 0) and according to the third thermodynamics principle of
Planck S′

0 = S′′
0 = 0.

The above relations are used in the next section of this paper in order to show the
temperature variations of the characteristic properties of Ni.

4. Numerical results and conclusions

Taking the self-consistent relationships connecting the dynamic and thermodynamic quantities
with any given interatomic interaction function, we have found a few sets of relatively optimal
values of the modified and classical generalized Morse pair potential parameters, fitting them
by the trial-and-error method to the above mentioned zero-point experimental data [19] for
l0, E0 and B0. Instead of the fourth condition we assume that either the ratio α/β or the
repulsive slope parameter α obtained by Akgün and Uğur are correct and so the two series of
sets of parameters have been created. The last condition seems to be especially well founded
as the α = 10.53 of Akgün and Uğur is very close to those obtained purely theoretically by
Hafemeister [14] for the noble fcc metals. The fifth condition in the modified Morse potential
is replaced by the assumption that the value of γ obtained by Akgün and Uğur from the room-
temperature elastic data is correct. However, we have also decided to test the sensitivity of the
theory with respect to the value of γ and so we have found the two additional sets of parameters
α, β, r0, D0—one for γ distinctly lower than γ AU and the second for γ distinctly greater than
γ AU.

It is worthwhile to point out here that there is a possibility of using two different values
for the cohesive energy. The total energy of a system may be expressed as a sum of two- and
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Figure 1. Temperature variations of the enthalpy of Ni in relation to its zero-point value obtained
for various sets of AU and M potential parameters (see table 1). The experimental data [19] are
given for comparison.

Table 1. Optimal values of the modified (AU) and classical (M) Morse pair potential parameters
obtained for Ni for various input assumptions with use of the experimental data [19] for l0, B0 and
E0 given below. AU1 and M1 are with the original value of α/β while the others are with the
original value of α.

AU1 M1 AU2 M2 AU3 M3 AU4 AU5

r0 (10−10 m) 2.8364 2.782 2.859 2.813 2.576 2.549 2.822 3.030
D0 (10−21 J) 67.22 68.83 48.90 51.07 44.47 45.6 50.24 43.25
α (−) 6.89 7.420 10.53 10.53 10.53 10.53 10.62 10.54
β (−) 3.50 3.766 1.853 2.265 4.66 5.24 2.14 0.97
γ (−) 0.44 — 0.44 — 0.44 — 0.1 1.5
α/β (−) 1.97 1.97 5.683 4.65 2.26 2.01 4.95 10.87
l0 (10−10 m) 2.478 2.478 2.478
B0 (GPa) 182 182 182
E0 (10−21 J/atom) −711.2 −331.2 −711.2

many-body interactions. However, for simplicity, as in the RANSCPT, we often reject the
many-body effects in explicit form, ‘hiding’ them in the pair potential parameters, and then
we should use for parameter calculations the full experimental value of the cohesive energy.
But if we decide to study many-body interactions separately we must take in the two-body
analysis only the ionic part of E0, that is the cohesive energy diminished by the many-body
energy. Such a diminished cohesive energy was used originally by Akgün and Uğur (we have
modified the original parameters a little to improve their fitting to the experimental data), so
their potential function differs distinctly from ours fitted to the total cohesive energy. For
better qualitative comparisons we have also fitted to the ionic part of E0 the classical Morse
pair potential.

All our calculations were realized for various numbers of shells of neighbours and it
appeared that any essential differences vanished over five shells. The final all-neighbour
results for various parameters sets are presented in table 1, together with the experimental
input data.
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Figure 2. Temperature variations of the free energy of Ni in relation to its zero-point value obtained
for various sets of AU and M potential parameters (see table 1). The experimental data [19] are
given for comparison.

Figure 3. Temperature variations of the entropy of Ni obtained for various sets of AU potential
parameters (see table 1). The experimental data [19] are given for comparison.

As we see, the classical Morse potential is always a little deeper and tighter than the
modified Morse potential of Akgün and Uğur. AU3 and M3 functions which have been
obtained from the ionic cohesive energy are of course distinctly shallower and tighter than the
others.

Having at our disposal the potential parameters, we could carry out for Ni comparative
calculations of the physical quantities for various sets of parameters. The selected results
are presented, for better qualitative comparison in graphical form, together with the available
experimental data (figures 1–5).

Let us notice that the curves in all the figures are assembled with respect to the additional
input assumption in the method of calculating of the potential parameters (α/β = const,
α = const or E0 = two-body cohesive energy). The differences are especially evident in
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Figure 4. Temperature variations of the nearest neighbour separation in Ni obtained for various
sets of AU and M potential parameters (see table 1).

Figure 5. Temperature variations of the isothermal bulk modulus of Ni obtained for various sets
of AU and M potential parameters (see table 1).

the cases of the nearest neighbour separation and bulk modulus and to a lesser degree for the
thermodynamic potentials. Concerning a comparison of the AU and M pair potentials and,
within AU, a comparison of the versions with various values of the parameter γ , we see that
the scale of correction is rather low. On the other hand, the results for the cases with α/β ≈ 2
are distinctly worse than those for α ≈ 10.53 when α/β � 2 and the latter are worse than
those for parameters obtained with neglect of many-body interactions in the cohesive energy.
Unfortunately, we are not sure if these last results are reliable enough as the RANSCPT does
not take into account many-body interactions explicitly and so these effects should be rather
hidden in the pair potential parameters. Nevertheless, we would like to note that the results
for thermal expansion and bulk modulus are especially sensitive with respect to the choice of
the method of treating many-body effects in calculating potential parameters.

Taking all this into consideration, we would like to state that the modification of Morse
pair potential proposed by Akgün and Uğur does not play an essential role concerning the
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dynamic and thermodynamic results for Ni and so should be rather applied at the final stage
of fitting the theory to the experiment, in particular since the classical Morse function is more
convenient in analytical derivations. On the other hand, we see that the results for parameters
connected with many-body treatment are in better agreement with the experiment, which as
we mentioned may be incidental but also means that we should turn to any anharmonic many-
body theory of lattice dynamics. This next indicates the necessity of revision of the SCPT so it
could take into account not only two-body interactions. Considering the discrepancy between
the theory and the experiment in the high temperature region we should also try to increase
over four (as in the RANSCPT) the number of ‘important’ terms in the lattice potential energy
decomposition.

Appendix

The exact expressions for the symbols used in equations (4) and (5) are as follows:

λ = 1

z f (r, T ) l2
0

, f (r, T ) = ∂2ϕ̃

∂r2
= ϕ̃′′, ω2

L = 8h̄2 f (r, T )

m
,

B1 = 0.49
[
1 − 7.446 × 10−3γ (T )

]
, γ (T ) = ωLβ (T )

kBT
, β (T ) = kBT

g2 (r, T )

f 3 (r, T )
,

g (r, T ) = ϕ̃′′′ (r) , C1 = 1.0366π4 [
1 + 0.102γ (T )

]
, β1 = ωL

kBT
,

A = [1 − 0.11β (T )] .

z, h̄ and m are the number of nearest neighbours, the Planck constant divided by 2π and the
mass of the atom, respectively.
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[17] Akgün I and Uğur G 1998 Nuovo Cimento 20 1549
[18] Tomaszeski J and Słoma P 2003 Proc. SPIE, Crystalline Materials for Optoelectronics 5136 159
[19] Hultgren R, Orr R R, Anderson P D and Kelley K K 1963 Selected Values of Thermodynamic Properties of

Metals and Alloys (New York: Wiley)
[20] Malinowska-Adamska C and Słoma P 2003 Proc. SPIE, Crystalline Materials for Optoelectronics 5136 164
[21] Sikós T and Aksienov V L 1972 Phys. Status Solidi b 50 171
[22] Anselm A I 1980 Introduction to Statistical Physics and Thermodynamics (Warsaw: PWN) (in Polish)

http://dx.doi.org/10.1103/RevModPhys.29.664
http://dx.doi.org/10.1103/PhysRev.114.687
http://dx.doi.org/10.1002/pssb.200301871
http://dx.doi.org/10.1016/0022-3697(69)90344-8

	1. Introduction
	2. Interatomic interactions in solid Ni
	3. The basis of the self-consistent calculations
	4. Numerical results and conclusions
	References

